68 research outputs found

    Postsynaptic membrane addition depends on the Discs-Large-interacting t-SNARE Gtaxin

    Get PDF
    Targeted membrane addition is a hallmark of many cellular functions. In the nervous system, modification of synaptic membrane size has a major impact on synaptic function. However, because of the complex shape of neurons and the need to target membrane addition to very small and polarized synaptic compartments, this process is poorly understood. Here, we show that Gtaxin (GTX), a Drosophila t-SNARE (target-soluble N-ethylmaleimide-sensitive factor attachment protein receptor), is required for expansion of postsynaptic membranes during new synapse formation. Mutations in gtx lead to drastic reductions in postsynaptic membrane surface, whereas gtx upregulation results in the formation of complex membrane structures at ectopic sites. Postsynaptic GTX activity depends on its direct interaction with Discs-Large (DLG), a multidomain scaffolding protein of the PSD-95 (postsynaptic density protein-95) family with key roles in cell polarity and formation of cellular junctions as well as synaptic protein anchoring and trafficking. We show that DLG selectively determines the postsynaptic distribution of GTX to type I, but not to type II or type III boutons on the same cell, thereby defining sites of membrane addition to this unique set of glutamatergic synapses. We provide a mechanistic explanation for selective targeted membrane expansion at specific synaptic junctions

    Complement c5a receptor facilitates cancer metastasis by altering t-cell responses in the metastatic niche

    Get PDF
    The impact of complement on cancer metastasis has not been well studied. In this report, we demonstrate in a preclinical mouse model of breast cancer that the complement anaphylatoxin C5a receptor (C5aR) facilitates metastasis by suppressing effector CD8(+) and CD4(+) T-cell responses in the lungs. Mechanisms of this suppression involve recruitment of immature myeloid cells to the lungs and regulation of TGF beta and IL10 production in these cells. TGF beta and IL10 favored generation of T regulatory cells (T-reg) and Th2-oriented responses that rendered CD8(+) T cells dysfunctional. Importantly, pharmacologic blockade of C5aR or its genetic ablation in C5aR-deficient mice were sufficient to reduce lung metastases. Depletion of CD8(+) T cells abolished this beneficial effect, suggesting that CD8(+) T cells were responsible for the effects of C5aR inhibition. In contrast to previous findings, we observed that C5aR signaling promoted T-reg generation and suppressed T-cell responses in organs where metastases arose. Overall, our findings indicated that the immunomodulatory functions of C5aR are highly context dependent. Furthermore, they offered proof-of-concept for complement-based immunotherapies to prevent or reduce cancer metastasis. (C) 2014 AACR

    EOSC-SYNERGY EU Deliverable D2.3: Final report on EOSC integration

    Get PDF
    This report is delivered in the form of a "Handbook" on how to integrate national clouds, thematic resources, and data repositories conformant to common quality standards, and harmonised in terms of technological, policy, and legal aspects.EOSC-SYNERGY receives funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No. 857647.Peer reviewe

    The relationship between seminal leukocytes, oxidative status in the ejaculate, and apoptotic markers in human spermatozoa

    Get PDF
    The aim of this study was to investigate the relationship between seminal leukocytes, reactive oxygen species (ROS) production in the ejaculate, and markers of apoptosis in human spermatozoa. Semen samples were collected from 60 patients attending fertility clinics at the Reproductive Biology Unit at Tygerberg Academic Hospital and Vincent Pallotti Hospital, Cape Town, South Africa. The concentration of seminal leukocytes was determined and was correlated with ROS production in the ejaculate, the percentage of superoxide (·O2 )- and hydrogen peroxide (H2O2)-positive spermatozoa, glutathione activation in the ejaculate, and with markers of apoptosis in spermatozoa, namely cysteine-dependent aspartate-directed proteases (caspase)-3/7 activation, mitochondrial membrane potential (ΔΨm), and the percentage of terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling (TUNEL)-positive sperm. Significant correlations with the concentration of seminal leukocytes were found for ROS production in the ejaculate, the percentage of ·O2 -positive spermatozoa, and caspase-3/7 activation in the ejaculate. Leukocytospermic samples showed significantly higher ROS production, percentage of ·O2 -positive sperm, GSH activation, and caspase-3/7 activation compared to non-leukocytospermic samples. The percentage of ·O2 -positive sperm was significantly correlated with sperm ΔΨm and caspase-3/7 activation in the ejaculate. Sperm ΔΨm and TUNEL-positive sperm did not correlate with seminal leukocyte concentration. Data demonstrate that high seminal leukocyte concentrations that leads to increased seminal ROS production, and is also associated with caspase activation in the male germ cell and increased mitochondrial ROS production. The latter could possibly be a result of disturbed ΔΨm. The activation of caspase-3/7 could then follow the increased intrinsic superoxide levels due to depleted intrinsic glutathione (GSH). These cellular events might not directly and immediately lead to DNA fragmentation as an endpoint of apoptosis because of topological hindrances.Web of Scienc

    A Heterogeneous In Vitro Three Dimensional Model of Tumour-Stroma Interactions Regulating Sprouting Angiogenesis

    Get PDF
    Angiogenesis, the formation of new blood vessels, is an essential process for tumour progression and is an area of significant therapeutic interest. Different in vitro systems and more complex in vivo systems have been described for the study of tumour angiogenesis. However, there are few human 3D in vitro systems described to date which mimic the cellular heterogeneity and complexity of angiogenesis within the tumour microenvironment. In this study we describe the Minitumour model – a 3 dimensional human spheroid-based system consisting of endothelial cells and fibroblasts in co-culture with the breast cancer cell line MDA-MB-231, for the study of tumour angiogenesis in vitro. After implantation in collagen-I gels, Minitumour spheroids form quantifiable endothelial capillary-like structures. The endothelial cell pre-capillary sprouts are supported by the fibroblasts, which act as mural cells, and their growth is increased by the presence of cancer cells. Characterisation of the Minitumour model using small molecule inhibitors and inhibitory antibodies show that endothelial sprout formation is dependent on growth factors and cytokines known to be important for tumour angiogenesis. The model also shows a response to anti-angiogenic agents similar to previously described in vivo data. We demonstrate that independent manipulation of the different cell types is possible, using common molecular techniques, before incorporation into the model. This aspect of Minitumour spheroid analysis makes this model ideal for high content studies of gene function in individual cell types, allowing for the dissection of their roles in cell-cell interactions. Finally, using this technique, we were able to show the requirement of the metalloproteinase MT1-MMP in endothelial cells and fibroblasts, but not cancer cells, for sprouting angiogenesis

    Deletion of Genes Implicated in Protecting the Integrity of Male Germ Cells Has Differential Effects on the Incidence of DNA Breaks and Germ Cell Loss

    Get PDF
    Infertility affects approximately 20% of couples in Europe and in 50% of cases the problem lies with the male partner. The impact of damaged DNA originating in the male germ line on infertility is poorly understood but may increase miscarriage. Mouse models allow us to investigate how deficiencies in DNA repair/damage response pathways impact on formation and function of male germ cells. We have investigated mice with deletions of ERCC1 (excision repair cross-complementing gene 1), MSH2 (MutS homolog 2, involved in mismatch repair pathway), and p53 (tumour suppressor gene implicated in elimination of germ cells with DNA damage).We demonstrate for the first time that depletion of ERCC1 or p53 from germ cells results in an increased incidence of unrepaired DNA breaks in pachytene spermatocytes and increased numbers of caspase-3 positive (apoptotic) germ cells. Sertoli cell-only tubules were detected in testes from mice lacking expression of ERCC1 or MSH2 but not p53. The number of sperm recovered from epididymes was significantly reduced in mice lacking testicular ERCC1 and 40% of sperm contained DNA breaks whereas the numbers of sperm were not different to controls in adult Msh2 -/- or p53 -/- mice nor did they have significantly compromised DNA.These data have demonstrated that deletion of Ercc1, Msh2 and p53 can have differential but overlapping affects on germ cell function and sperm production. These findings increase our understanding of the ways in which gene mutations can have an impact on male fertility

    Neurexins and Neuroligins: Recent Insights from Invertebrates

    Get PDF
    During brain development, each neuron must find and synapse with the correct pre- and postsynaptic partners. The complexity of these connections and the relatively large distances some neurons must send their axons to find the correct partners makes studying brain development one of the most challenging, and yet fascinating disciplines in biology. Furthermore, once the initial connections have been made, the neurons constantly remodel their dendritic and axonal arbours in response to changing demands. Neurexin and neuroligin are two cell adhesion molecules identified as important regulators of this process. The importance of these genes in the development and modulation of synaptic connectivity is emphasised by the observation that mutations in these genes in humans have been associated with cognitive disorders such as Autism spectrum disorders, Tourette syndrome and Schizophrenia. The present review will discuss recent advances in our understanding of the role of these genes in synaptic development and modulation, and in particular, we will focus on recent work in invertebrate models, and how these results relate to studies in mammals

    Dominant Cone-Rod Dystrophy: A Mouse Model Generated by Gene Targeting of the GCAP1/Guca1a Gene

    Get PDF
    Cone dystrophy 3 (COD3) is a severe dominantly inherited retinal degeneration caused by missense mutations in GUCA1A, the gene encoding Guanylate Cyclase Activating Protein 1 (GCAP1). The role of GCAP1 in controlling cyclic nucleotide levels in photoreceptors has largely been elucidated using knock-out mice, but the disease pathology in these mice cannot be extrapolated directly to COD3 as this involves altered, rather than loss of, GCAP1 function. Therefore, in order to evaluate the pathology of this dominant disorder, we have introduced a point mutation into the murine Guca1a gene that causes an E155G amino acid substitution; this is one of the disease-causing mutations found in COD3 patients. Disease progression in this novel mouse model of cone dystrophy was determined by a variety of techniques including electroretinography (ERG), retinal histology, immunohistochemistry and measurement of cGMP levels. It was established that although retinal development was normal up to 3 months of age, there was a subsequent progressive decline in retinal function, with a far greater alteration in cone than rod responses, associated with a corresponding loss of photoreceptors. In addition, we have demonstrated that accumulation of cyclic GMP precedes the observed retinal degeneration and is likely to contribute to the disease mechanism. Importantly, this knock-in mutant mouse has many features in common with the human disease, thereby making it an excellent model to further probe disease pathogenesis and investigate therapeutic interventions

    Factors Associated with Revision Surgery after Internal Fixation of Hip Fractures

    Get PDF
    Background: Femoral neck fractures are associated with high rates of revision surgery after management with internal fixation. Using data from the Fixation using Alternative Implants for the Treatment of Hip fractures (FAITH) trial evaluating methods of internal fixation in patients with femoral neck fractures, we investigated associations between baseline and surgical factors and the need for revision surgery to promote healing, relieve pain, treat infection or improve function over 24 months postsurgery. Additionally, we investigated factors associated with (1) hardware removal and (2) implant exchange from cancellous screws (CS) or sliding hip screw (SHS) to total hip arthroplasty, hemiarthroplasty, or another internal fixation device. Methods: We identified 15 potential factors a priori that may be associated with revision surgery, 7 with hardware removal, and 14 with implant exchange. We used multivariable Cox proportional hazards analyses in our investigation. Results: Factors associated with increased risk of revision surgery included: female sex, [hazard ratio (HR) 1.79, 95% confidence interval (CI) 1.25-2.50; P = 0.001], higher body mass index (fo
    • …
    corecore